

Welcome to OpenHSV’s documentation!

OpenHSV is an open platform for laryngeal high-speed videoendoscopy. This documentation will help you
to setup OpenHSV and to do data analysis.

[image: OpenHSV screenshot]

Note

OpenHSV is only a research tool and is not FDA approved. You may consult your local ethics committee
before using OpenHSV in your environment/clinic.

User Guide

	Introduction

	Hardware setup
	Audio

	Video

	Illumination

	Acquisition

	Software setup
	Requirements

	Supported cameras

	Install and Operate OpenHSV

	Testing environment

	Your fist acquisition
	Saving data

	Data Analysis
	Audio analysis

	Video analysis

	Analysis

	3D printed parts
	Endoscope holder

	Cable holder

	Microphone mount

	Droplet protection shield

Developer Guide

	openhsv
	openhsv package

	openhsv package
	Submodules

	openhsv.main module

	Module contents

	openhsv.analysis package
	Module contents

	Submodules

	openhsv.analysis.nn module

	openhsv.analysis.parameters module

	openhsv.analysis.midline module

	openhsv.analysis.pvg module

	openhsv.gui package
	Submodules

	openhsv.gui.misc module

	openhsv.gui.patient module

	openhsv.gui.settings module

	Module contents

	openhsv.hardware package
	Submodules

	openhsv.hardware.camera module

	Module contents

Introduction

OpenHSV is an open source system for high-speed videoendoscopy (HSV). In contrast to videostroboscopy,
with HSV we are able to see each vocal fold oscillation cycle with high temporal resolution. To not only
visualize but also quantify the vocal fold oscillation behavior, OpenHSV contains also a data analysis part
that segments the glottal area in each frame and computes quantitative parameters thereof. We further
acquire simultaneously audio signals that are synchronized to the video signal. Quantitative parameters
derived from the audio signal are also computed.

In this user guide, we provide the steps to built the system yourself.

Steps:

	Hardware setup

	Software setup

	First acquisition

	Data analysis

Hardware setup

The OpenHSV system consists of an audio, video, illumination and acquisition module.

[image: ../_images/connection.png]

Audio

The audio signal is acquired using a high-quality lavalier microphone, e.g. DPA 4060. This is connected
to a conventional USB-powered two-channel audio interface. Two channels, because we need one channel for
the microphone and one for the camera synch. The microphone is mounted on a custom 3D-printed clamp that
is mounted on the endoscope.

Video

Follow these steps:

	Mount objective/video coupler to camera

	Connect video coupler to endoscope

	Connect light guide to endoscope

	Mount microphone mount on endoscope

	Connect camera to breakout board

	Connect microphone to audio interface

	Connect camera synch out to audio interface (you may need a BNC -> TSSR adapter [https://www.perakabel.de/bnc-stecker-auf-klinkenstecker-6-3mm-mono-kabel-50-ohm.html])

	Connect camera to computer (patch cable)

You can start and stop the acquisition using the OpenHSV software; however, stopping the acquisition using
a foot switch is better suited in an examination setting. For that, connect a foot switch to the TRIG IN port.
Ensure that the foot switch has a BNC connector.

Note

Foot switch may come with loose ends.
This may need some additional tinkering, such as soldering a BNC connector to the cable.
As replacement, you may also use a screw-type BNC connector [https://www.reichelt.de/terminal-block-2-pin-bnc-stecker-goobay-76738-p212970.html].

Illumination

For high-speed videoendoscopy, a powerful illumination unit, such as STORZ TL 300, is unevitable.
Connect the power cable and the light guide accordingly. You may need 100% of light output, depending
on your video coupler and recording sampling rate.

Acquisition

We use a conventional personal computer (PC) installed with Windows 10. Depending on your PC,
you may add another Gigabit Ethernet adapter to have both, network access and camera data transfer.
With IDT cameras, the Ethernet adapter needs to have a similar IP address. Check with the camera’s IP address
and change it accordingly for your case. E.g. the camera has 100.0.0.100, then you may use 100.0.0.99 on your PC.

Software setup

We assume that Windows 10 is running on your system, and you have basic knowledge in Python.

Requirements

Ensure that the following software is installed on your computer:

	Python 3.x, tested with Python 3.6 and Anaconda package

	IDT SDK (to access drivers, get from distributor)

Supported cameras

OpenHSV currently provides only support for the CCM series of IDT high-speed cameras [https://idtvision.com/products/cameras/ccm-series-cameras/], but can be extended to your individual case.

Install and Operate OpenHSV

Clone our Github repository [https://github.com/anki-xyz/openhsv] and install the openhsv package with pip:

pip install setup.py

Run OpenHSV by executing the main.py script.

python main.py

An easy way to create a shortcut to the OpenHSV software is to create a bat file with the following content:

Activate anaconda3 environment
call "path/to/activate.bat" "path/to/anaconda3"
Go to openhsv directory
pushd "path/to/openhsv"
Execute main.py without showing console
python.exe -u "main.py"

You may then place a shortcut to that file on the Desktop to allow easy access for examiners.

A common problem is that the camera drivers are not found. Ensure that the driver files are either available in the system PATH or
directly in the OpenHSV directory. You may need all DLLs from the IDT SDK.

Testing environment

If no camera is available or other parts of OpenHSV should be tested, we supply a dummy camera that loops through the example video shipped with OpenHSV.
You only need to change in the __init__.py file the following line:

from openhsv.hardware.camera import IdtCamera as Camera

to

from openhsv.hardware.camera import DummyCamera as Camera

Your fist acquisition

Follow these steps:

	Connect everything according to Hardware setup.

	Ensure all software is installed according to Software setup.

	Turn on computer, illumination, and camera.

	Open the OpenHSV software.

	Click on “Initialize camera”. This opens a connection to the camera using the default settings.

	Click on “Start Camera Feed”. Now, the camera should stream images as live preview and the audio signals should show the reference signal and an acoustic trace.

	Click on “Stop Camera Feed” or use the optional foot switch to stop the recording.

	Use one of the sliders below to browse through the acquired images.

	Select a region of interest using the two range sliders. The bright blue area indicates the selected files.

	You may analyze your data by clicking on “Start Analysis - Glottis Segmentation” after selecting the glottis using the rectangle in the preview window. See also Data Analysis.

	Click on “Save data” to save the audio, video and meta data to the local file system. The frames are downloaded from the camera and stored in conventional formats.

Saving data

Data is stored in several ways:

	Data source

	File type

	Video data

	mp4 (compressed)

	mp4 (lossless, recommended for further analysis)

	Audio data

	wav (uncompressed)

	Meta data

	json (human-readable, uncompressed)

	Analysis

	hdf5 (if available)

	Parameters

	csv (if available)

Data Analysis

Data analysis is performed for audio (a) and video (b) data and follows different paths:

[image: ../_images/data_analysis.png]

Audio analysis

Audio data is cropped to the last 4 seconds (arbitrary, can be changed). The landmarks for acquisition
and synchronization are detected using several peak finding algorithms (see code). The audio data that
corresponds to the video data is subsequently analyzed (raw signal in above Figure, panel a).

Quantitative parameters are computed on the signal. Currently, these are:

	mean-jitter

	jitter-percent

	mean-shimmer

	shimmer-percent

	fundamental frequency (F0) and standard deviation (STD)

	Harmonics-to-Noise-Ratio (HNR)

	Cepstral Peak Prominence (CPP)

Video analysis

The glottal area is segmented using a deep convolutional neural network that was trained on the BAGLS https://www.bagls.org/ dataset.
Next, we use the segmented glottal area to

	compute the glottal area waveform (GAW)

	
	estimate the glottal midline to

	
	compute GAW for left and right vocal fold

	compute phonovibrogram (PVG)

With that, we follow the analysis pipeline as shown in the above Figure, panel b,
to finally compute quantitative parameters. Currently, these are:

	Open Quotient (OQ)

	Closing Quotient (CQ)

	Asymmetry Quotient (AQ)

	Rate Quotient (RQ)

	Speed Quotient (SQ)

	Speed Index (SI)

	Fundamental frequency (F0)

	Amplitude perturbation factor (APF)

	Amplitude perturbation quotient (APQ)

	Glottis gap index (GGI)

	Amplitude Quotient (AQ)

	Stiffness

	Amplitude Symmetry Index (ASI)

	Phase Asymmetry Index (PAI)

Analysis

Parameters are shown in a separate window using a tabular view. All computed parameters can be exported as CSV file.

3D printed parts

We 3D-printed the following parts to fit our needs. Everything was printed in Prusa PLA
using the Prusa Mini FDM 3D-printer [https://www.prusa3d.de/original-prusa-mini/]. We use typically an infill of 15% and 200 um layer size.
All parts were designed in Fusion 360.

Endoscope holder

Endoscope holder to store the imaging unit.

[image: ../_images/Endoscope_holder.png]

Cable holder

Cable holder for light guide and other cables.

[image: ../_images/Cable_holder.png]

Microphone mount

The microphone mount consists of two parts:
Part1 and Part2. You further need M3 screws and nuts
to assemble it. Depending on your endoscope and the examiner
this mount may cause some discomfort in handling the imaging unit.

[image: ../_images/Mic_clamp.png]

Droplet protection shield

Also known as Corona shield. It is mounted with M4 screws on the IDT
camera to protect the camera. On the side we provide an integrated microphone
mount. The microphone cable enters on the side and is then pushed inwards.

[image: ../_images/corona_shield.png]

openhsv

	openhsv package
	Submodules

	openhsv.main module

	Module contents

openhsv package

Submodules

openhsv.main module

Module contents

	
class openhsv.OpenHSV(app, base_folder='C:/openhsv', verbose=False)

	Bases: PyQt5.QtWidgets.QWidget

OpenHSV is the main class for recording high-speed videoendoscopy footage
and audio. It interacts with the audio interface and the camera, performs
deep neural network based analysis and saves the data.

	Parameters

	
	app (QtWidgets.QApplication) – To init OpenHSV, you only need to pass the QApplication instance

	base_folder (str, optional) – Location where data is stored

	verbose (boolean, optional) – Prints additional information to the Python console, defaults to False.

	
findpatient()

	Opens a window to select patient from database.

	
showMaximized()

	shows the window maximized and updates the range indicator

	
screenshot()

	Takes a screenshot from the current camera image and saves it as png file.

	
settings()

	Opens settings dialog and saves settings

	
initSettings(exposureTime=245, videoSamplingRate=4000, audioSamplingRate=80000, audioBlockSize=4000, audioBufferSize=3, baseFolder='', saveRaw=True)

	Initializes camera, audio and saving settings

	Parameters

	
	exposureTime (int, optional) – camera exposure time in us, defaults to 245

	videoSamplingRate (int, optional) – frames per second, defaults to 4000

	audioSamplingRate (int, optional) – audio sampling rate in Hz, defaults to 80000

	audioBlockSize (int, optional) – audio block size transmitted from interface, defaults to 4000

	audioBufferSize (int, optional) – audio buffer size (multiples of block size), defaults to 3

	baseFolder (str, optional) – base folder for data saving, defaults to ‘’

	saveRaw (bool, optional) – if raw video data should be saved as lossless compressed mp4, defaults to True

	
patient()

	Opens interface for patient information

	
updateRangeIndicator()

	updates the range indicator that shows the subselection of the video
for download or analysis

	
initCamera(force_init=False)

	Initializes camera connection. Open camera, do basic configuration
and set advanced settings, such as exposure time and video sampling rate (fps).
If camera connection could be established, enable further buttons.

	Parameters

	force_init (bool, optional) – forces (re-)initialization of camera, defaults to False

	
playStop()

	

	
setImage(im, restore_view=True, restore_levels=False)

	Shows image in the camera preview window. It further can restore the previous
view, i.e. zoom and location, as well as the levels (contrast, brightness) of the
previous image. Currently, the restoring level feature is by default deactivated,
because in the examination procedure it is quite common that there is no signal
(away from patient) or oversaturated (very close to the mouth/tongue).

	Parameters

	
	im (numpy.ndarray) – image to be shown in preview

	restore_view (bool, optional) – if view should be restored from previous image, defaults to True

	restore_levels (bool, optional) – if contrast/brightness should be restored from previous image, defaults to False

	
nextFrame()

	

	
initAudio()

	initialize audio recorder and empties the audio queue and data list.
It selects the first audio interface found (in OpenHSV the Focusrite Scarlet 2i2),
selects both channels (by default, channel 1 is the camera reference signal and
channel 2 the actual audio signal). Every audio data block is passed to the callback function.
The callback works already on a separate thread, no need to move it to a different one.
It also immmediately starts the recorder.

	
stopAudio()

	Stops audio recording and saves data from queue to internal memory

	
F0(channel_for_F0=1, intensity_threshold=5)

	Calculates fundamental frequency from audio signal.
It further saves the audio data to internal memory.

	Parameters

	
	channel_for_F0 (int, optional) – selected audio channel for F0 calculation. In our setting,
channel 0 is for the reference signal,
channel 1 for the audio signal, defaults to 1

	intensity_threshold (int, optional) – intensity threshold for calculating F0, defaults to 5

	
startCamera()

	Starts camera (and audio) feed. If grabbing is already active,
it stops grabbing from the camera and stops streaming audio data.
A full screen preview is shown to provide maximum view. It starts
fundamental frequency calculation and saves audio data in memory.

	
analyze()

	Analyzes the selected range of video data. The selected frames will
be downloaded from the camera and subsequently processed, i.e. segmented
by the neural network.

	
save(save_last_seconds=4)

	Saves the recorded and selected data. In particular, we save
the metadata, including audio, video and patient metadata, audio
data together with camera reference signal and video data.

	Parameters

	save_last_seconds (int) – the last seconds from recording end to be saved.
We record one second after the stop-trigger, and we
usually record one second of footage, thus, we need at least two
seconds to ensure saving all relevant audio data. To adjust for some
uncertainties, we recommend recording a few more seconds. Defaults to 4.

Note

Saving the data in an appropriate format is not trivial. We both
need to consider portability, cross-functionality and quality.
Therefore, we save metadata as structured JSON file format, a common
file format that can be opened and viewed with any text editor,
but easily processed by a variety of data analysis software.

Further, audio data is saved as common wav files, as well as packed as
HDF5 file. HDF5 is a very common container format that allows storing
of complex data in a very efficient and convenient way.

Video data, however, is saved as mp4 file format, as this is
highly portable and can be viewed with a common video viewers. The h264 codec
also allows saving the video data in a lossless file format, needed for accurate
data analysis while keeping the file size at a reasonable level and still
ensure the ability to preview the video.

If there’s any segmentation already available, the segmentation maps
are stored as well in HDF5 file format as binary maps.

	
close(self) → bool

	

openhsv package

Submodules

openhsv.main module

Module contents

	
class openhsv.OpenHSV(app, base_folder='C:/openhsv', verbose=False)

	Bases: PyQt5.QtWidgets.QWidget

OpenHSV is the main class for recording high-speed videoendoscopy footage
and audio. It interacts with the audio interface and the camera, performs
deep neural network based analysis and saves the data.

	Parameters

	
	app (QtWidgets.QApplication) – To init OpenHSV, you only need to pass the QApplication instance

	base_folder (str, optional) – Location where data is stored

	verbose (boolean, optional) – Prints additional information to the Python console, defaults to False.

	
findpatient()

	Opens a window to select patient from database.

	
showMaximized()

	shows the window maximized and updates the range indicator

	
screenshot()

	Takes a screenshot from the current camera image and saves it as png file.

	
settings()

	Opens settings dialog and saves settings

	
initSettings(exposureTime=245, videoSamplingRate=4000, audioSamplingRate=80000, audioBlockSize=4000, audioBufferSize=3, baseFolder='', saveRaw=True)

	Initializes camera, audio and saving settings

	Parameters

	
	exposureTime (int, optional) – camera exposure time in us, defaults to 245

	videoSamplingRate (int, optional) – frames per second, defaults to 4000

	audioSamplingRate (int, optional) – audio sampling rate in Hz, defaults to 80000

	audioBlockSize (int, optional) – audio block size transmitted from interface, defaults to 4000

	audioBufferSize (int, optional) – audio buffer size (multiples of block size), defaults to 3

	baseFolder (str, optional) – base folder for data saving, defaults to ‘’

	saveRaw (bool, optional) – if raw video data should be saved as lossless compressed mp4, defaults to True

	
patient()

	Opens interface for patient information

	
updateRangeIndicator()

	updates the range indicator that shows the subselection of the video
for download or analysis

	
initCamera(force_init=False)

	Initializes camera connection. Open camera, do basic configuration
and set advanced settings, such as exposure time and video sampling rate (fps).
If camera connection could be established, enable further buttons.

	Parameters

	force_init (bool, optional) – forces (re-)initialization of camera, defaults to False

	
playStop()

	

	
setImage(im, restore_view=True, restore_levels=False)

	Shows image in the camera preview window. It further can restore the previous
view, i.e. zoom and location, as well as the levels (contrast, brightness) of the
previous image. Currently, the restoring level feature is by default deactivated,
because in the examination procedure it is quite common that there is no signal
(away from patient) or oversaturated (very close to the mouth/tongue).

	Parameters

	
	im (numpy.ndarray) – image to be shown in preview

	restore_view (bool, optional) – if view should be restored from previous image, defaults to True

	restore_levels (bool, optional) – if contrast/brightness should be restored from previous image, defaults to False

	
nextFrame()

	

	
initAudio()

	initialize audio recorder and empties the audio queue and data list.
It selects the first audio interface found (in OpenHSV the Focusrite Scarlet 2i2),
selects both channels (by default, channel 1 is the camera reference signal and
channel 2 the actual audio signal). Every audio data block is passed to the callback function.
The callback works already on a separate thread, no need to move it to a different one.
It also immmediately starts the recorder.

	
stopAudio()

	Stops audio recording and saves data from queue to internal memory

	
F0(channel_for_F0=1, intensity_threshold=5)

	Calculates fundamental frequency from audio signal.
It further saves the audio data to internal memory.

	Parameters

	
	channel_for_F0 (int, optional) – selected audio channel for F0 calculation. In our setting,
channel 0 is for the reference signal,
channel 1 for the audio signal, defaults to 1

	intensity_threshold (int, optional) – intensity threshold for calculating F0, defaults to 5

	
startCamera()

	Starts camera (and audio) feed. If grabbing is already active,
it stops grabbing from the camera and stops streaming audio data.
A full screen preview is shown to provide maximum view. It starts
fundamental frequency calculation and saves audio data in memory.

	
analyze()

	Analyzes the selected range of video data. The selected frames will
be downloaded from the camera and subsequently processed, i.e. segmented
by the neural network.

	
save(save_last_seconds=4)

	Saves the recorded and selected data. In particular, we save
the metadata, including audio, video and patient metadata, audio
data together with camera reference signal and video data.

	Parameters

	save_last_seconds (int) – the last seconds from recording end to be saved.
We record one second after the stop-trigger, and we
usually record one second of footage, thus, we need at least two
seconds to ensure saving all relevant audio data. To adjust for some
uncertainties, we recommend recording a few more seconds. Defaults to 4.

Note

Saving the data in an appropriate format is not trivial. We both
need to consider portability, cross-functionality and quality.
Therefore, we save metadata as structured JSON file format, a common
file format that can be opened and viewed with any text editor,
but easily processed by a variety of data analysis software.

Further, audio data is saved as common wav files, as well as packed as
HDF5 file. HDF5 is a very common container format that allows storing
of complex data in a very efficient and convenient way.

Video data, however, is saved as mp4 file format, as this is
highly portable and can be viewed with a common video viewers. The h264 codec
also allows saving the video data in a lossless file format, needed for accurate
data analysis while keeping the file size at a reasonable level and still
ensure the ability to preview the video.

If there’s any segmentation already available, the segmentation maps
are stored as well in HDF5 file format as binary maps.

	
close(self) → bool

	

openhsv.analysis package

Module contents

Submodules

openhsv.analysis.nn module

	
class openhsv.analysis.nn.Analysis(app=None)

	Bases: PyQt5.QtWidgets.QWidget

Analysis widget that shows the segmentation process of the neural network.

	Parameters

	
	QWidget (PyQt5.QtWidgets.QWidget) – Inherits from QWidget

	app (PyQt5.QtWidgets.QWidget, optional) – QApplication, needed to process events to avoid freezing of the GUI, defaults to None

	
segmentSequence(ims, normalize=True, reinit=True)

	segments an image sequence, such as a video, frame by frame.

	Parameters

	
	ims (list of numpy.ndarray, or numpy.ndarray) – collection of images

	normalize (bool, optional) – normalize 0..255 to -1..1, defaults to True

	reinit (bool, optional) – deletes any previous segmentation information, defaults to True

	
segment(im)

	Segments an endoscopic image using a deep neural network

	Parameters

	im – np.ndarray (HxWx3)

	Returns

	

	
setAudio(audio)

	

	
syncAudio(start_frame, end_frame, total_frames, debug=False)

	

	
computeParameters(dt_audio=1.25e-05, dt_video=0.00025, debug=False)

	Compute parameters from GAW

	Parameters

	
	dt_audio (float, optional) – audio sampling time in seconds, defaults to 1/80000

	dt_video (float, optional) – video sampling time in seconds, defaults to 1/4000

	debug (bool, optional) – shows debugging information and plots, defaults to False

	
get()

	returns GAW and segmentation maps for video

	Returns

	GAW and segmentations

	Return type

	tuple(list, list(numpy.ndarray))

	
class openhsv.analysis.nn.ROIDialog(ims)

	Bases: PyQt5.QtWidgets.QDialog

openhsv.analysis.parameters module

	
openhsv.analysis.parameters.movingAverage

	computes moving average from x with a window of n

	Parameters

	
	x (numpy.ndarray) – input array

	n (int, optional) – window, defaults to 3

	Returns

	filtered array

	Return type

	numpy.ndarray

	
openhsv.analysis.parameters.detectMaximaMinima(s, distance=5, rel_height=0.01, use_prominence=True, clean_f0=None)

	Detect maxima and minima from a signal s.

	Parameters

	
	s (numpy.ndarray) – signal

	distance (int, optional) – distance between two peaks in samples, defaults to 5

	rel_height (float, optional) – minimum relative height of a found peak, defaults to .35

	use_prominence (bool, optional) – uses peak prominence for peak detection, defaults to True

	Returns

	tuple of maxima and minima locations

	Return type

	tuple(numpy.ndarray, numpy.ndarray)

	
openhsv.analysis.parameters.detectOpeningAndClosingEvents(signal, p_max, t=0.02)

	Detects glottis opening and closing events relative to
maximum opening events.

	Parameters

	
	signal (numpy.ndarray) – glottal area waveform

	p_max (list of indexes) – maxima of glottal area waveform

	t (float, optional) – threshold for finding signal bottom, defaults to 0.02

	Returns

	opening and closing point for each maximum

	Return type

	tuple(list(int), list(int))

	
openhsv.analysis.parameters.computeOpenAndClosedIntervals(t, opening, closed)

	computes the opened and closed intervals during each cycle.

	Parameters

	
	t (numpy.ndarray) – time

	opening (list(int)) – indices of opening points

	closed (list(int)) – indices of closing points

	Returns

	duration of opening and closed phases

	Return type

	tuple(list(float), list(float))

	
openhsv.analysis.parameters.computeOCandCOTransitions(t, opening, closed, p_max)

	Computes Open->Closed (OC) and Closed-Open (CO) transitions.

	Parameters

	
	t (numpy.ndarray) – time

	opening (list(int)) – indices of opening points

	closed (list(int)) – indices of closing points

	p_max (numpy.ndarray) – indices of cycle maxima

	Returns

	CO and OC durations

	Return type

	tuple(numpy.ndarray, numpy.ndarray)

	
openhsv.analysis.parameters.F0fromCycles(T, verbose=False, epsilon=1e-09)

	determine fundamental frequency (F0) based on period lengths

	Parameters

	
	T (numpy.ndarray) – periods

	verbose (bool, optional) – prints F0 mean and standard deviation, defaults to False

	Returns

	mean of F0 and std of F0

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.F0fromFFT(fft, freqs, freq_lower=75, freq_higher=500)

	fundamental frequency from power spectrum determined
assuming that fundamental frequency is equal to the dominant frequency.
Frequency is determined in physiological range (75-500 Hz).

	Parameters

	
	fft (numpy.ndarray) – fast fourier transformation of signal

	freqs (numpy.ndarray) – frequencies corresponding to FFT

	freq_lower (int, optional) – lower border for F0 prediction, defaults to 75

	freq_higher (int, optional) – higher border for F0 prediction, defaults to 500

	Returns

	fundamental frequency (F0)

	Return type

	float

	
openhsv.analysis.parameters.F0fromAutocorrelation(signal, freq=40000)

	Fundamental frequency using autocorrelation.

	Steps:

	
	rFFT of signal

	Corresponding frequencies

	Autocorrelation

	Find peaks in autocorrelation

	Remove first unrelevant peaks

	Use first peak as fundamental frequency

	Parameters

	
	signal (numpy.ndarray) – Signal (e.g. audio trace or GAW)

	freq (int) – sampling frequency, defaults to 40000 Hz

	Returns

	fundamental frequency (F0)

	Return type

	float

	
openhsv.analysis.parameters.asymmetryQuotient(CO, OC)

	Asymmetry Quotient (AsyQ)

\[\text{AsyQ} = \frac{1}{N} \sum_{i=1}^{N} \frac{\frac{CO_i}{OC_i}}{1+\frac{CO_i}{OC_i}}\]

	Parameters

	
	CO (numpy.ndarray) – Closed->Open transitions

	OC (numpy.ndarray) – Open->Closed transitions

	Returns

	asymmetry quotient (AQ), a.u.

	Return type

	float

	
openhsv.analysis.parameters.closingQuotient(CO, t_open)

	Closing Quotient (CQ)

\[\text{CQ} = \frac{1}{N} \sum_{i=1}^{N} \frac{CO_i}{t_{open,i}}\]

	Parameters

	
	CO (numpy.ndarray) – Closed->Open transitions

	t_open – Open interval

	Returns

	closing quotient (CQ), a.u.

	Return type

	float

	
openhsv.analysis.parameters.openQuotient(t_open, t_closed)

	Open Quotient (OQ)

\[\text{OQ} = \frac{1}{N} \sum_{i=1}^{N} \frac{t_{open,i}}{t_{open,i}+t_{closed,i}}\]

	Parameters

	
	t_open (numpy.ndarray) – Open intervals

	t_closed (numpy.ndarray) – Closed intervals

	Returns

	open quotient (OQ), a.u.

	Return type

	float

	
openhsv.analysis.parameters.rateQuotient(CO, OC, t_closed)

	Rate Quotient (RQ)

\[\text{RQ} = \frac{1}{N} \sum_{i=1}^{N} \frac{t_{closed,i} - CO_i}{OC_i}\]

	Parameters

	
	CO (numpy.ndarray) – Closed->Open transitions

	OC (numpy.ndarray) – Open->Closed transitions

	t_closed (numpy.ndarray) – closed intervals

	Returns

	rate quotient (RQ), a.u.

	Return type

	float

	
openhsv.analysis.parameters.speedIndex(CO, OC, t_open)

	Speed Index (SI)

\[\text{SI} = \frac{1}{N} \sum_{i=1}^{N} \frac{CO_i - OC_i}{t_{open,i}}\]

	Parameters

	
	CO (numpy.ndarray) – Closed->Open transitions

	OC (numpy.ndarray) – Open->Closed transitions

	t_open (numpy.ndarray) – open intervals

	Returns

	speed index (SI), a.u.

	Return type

	float

	
openhsv.analysis.parameters.speedQuotient(CO, OC)

	Speed Quotient (SQ)

\[\text{SQ} = \frac{1}{N} \sum_{i=1}^{N} \frac{CO_i}{OC_i}\]

	Parameters

	
	CO (numpy.ndarray) – Closed->Open transitions

	OC (numpy.ndarray) – Open->Closed transitions

	Returns

	speed quotient (SQ), a.u.

	Return type

	float

	
openhsv.analysis.parameters.meanJitter(T)

	Calculating the mean jitter in ms from signal periods

\[\text{mean-Jitter} = \frac{\sum_{i=1}^{N-1}|T_i - T_{i-1}|}{N-1}\]

	Parameters

	T (numpy.ndarray or list) – The signal periods

	Returns

	mean jitter in ms

	Return type

	float

	
openhsv.analysis.parameters.jitterPercent(T)

	Calculating the jitter in percent from signal periods.

\[\text{Jitter[%]} = \frac{\frac{1}{N-1}\sum_{i=1}^{N-1}|T_i - T_{i-1}|}{\frac{1}{N}\sum_{i=0}^{N-1}T_i} \cdot 100.\]

	Parameters

	T (numpy.ndarray or list) – The signal periods

	Returns

	jitter in percent

	Return type

	float

	
openhsv.analysis.parameters.meanShimmer(A, epsilon=1e-09)

	Calculating the mean shimmer in dB from the signal amplitude maxima.

\[\text{mean-Shimmer [db]} = \frac{20}{N-1}\sum_{i=0}^{N-2}|\log_{10} \left[\frac{A_i}{A_{i+1}} \right]|.\]

	Parameters

	A (numpy.ndarray or list) – The signal amplitude maxima

	Returns

	mean shimmer in db

	Return type

	float

	
openhsv.analysis.parameters.shimmerPercent(A, e=1e-05)

	Calculating the shimmer in percent from the signal amplitude maxima.

\[\text{Shimmer[%]} = \frac{\frac{20}{N-1}\sum_{i=0}^{N-2}|\log_{10} \left[\frac{A_i}{A_{i+1}} \right]|}{\frac{20}{N}\sum_{i=0}^{N-1}|\log_{10} A_i|} \cdot 100.\]

	Parameters

	A (numpy.ndarray or list) – The signal amplitude maxima

	Returns

	shimmer in percent

	Return type

	float

	
openhsv.analysis.parameters.periodPerturbationFactor(T)

	Calculating the Period Perturbation Factor (PPF) in arbitrary units using the signal periods.

\[\text{PPF} = \frac{1}{N-1} \sum_{i=1}^{N-1}|\frac{T_i-T_{i-1}}{T_i}| \cdot 100\]

	Parameters

	T (list) – periods

	Returns

	PPF in percent

	Return type

	float

	
openhsv.analysis.parameters.glottalGapIndex(signal, opening, epsilon=1e-09)

	Glottal Gap Index (GGI) that computes the relation between
minimum and maximum glottal area in each glottal cycle.

\[GGI = \frac{1}{N} \sum_i^N \frac{\min(a_i)}{\max(a_i)}\]

	Parameters

	
	signal (numpy.ndarray) – glottal area waveform

	opening (list) – points where the glottis opens

	epsilon (float, optional) – numerical stability, defaults to 1e-9

	Returns

	glottal gap index mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.amplitudePerturbationFactor(A)

	Amplitude perturbation factor.

\[APF = \frac{1}{N} \sum_{i=1}^{N-1}|\frac{A_i-A_{i-1}}{A_i}| \cdot 100\]

	Parameters

	A (list or numpy.ndarray) – amplitudes in each cycle

	Returns

	APF mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.amplitudePerturbationQuotient(A, k=3)

	Amplitude perturbation quotient

\[l = \frac{k-1}{2}\]

\[APQ_k = \frac{1}{N-k} \sum_{i=l}^{N-l-1}|1-\frac{k \cdot A_i}{\sum_{j=-l}^{l}A_{i+j}}| \cdot 100\]

	Parameters

	
	A (list or numpy.ndarray) – amplitudes in each cycle

	k (int, optional) – range, defaults to 3

	Returns

	APQ mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.amplitudeQuotient(signal, opening)

	Amplitude Quotient

\[AQ = \frac{A_i}{|\min_j \frac{d}{dj}f_i(j)|}\]

	Parameters

	
	signal (numpy.ndarray) – audio or GAW signal

	opening (list) – indices where glottis starts to open

	Returns

	AQ mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.stiffness(signal, opening)

	Stiffness

\[Stiffness = \frac{|\max_j |\frac{d}{dj}f_i(j)||}{A_i}\]

	Parameters

	
	signal (numpy.ndarray) – audio or GAW signal

	opening (list) – indices where glottis starts to open

	Returns

	stiffness mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.harmonicNoiseRatio(signal, freq, freq_lower=50, freq_higher=450, filter_autocorrelation=False, epsilon=1e-09)

	Computes Harmonic-Noise-Ratio (HNR) using autocorrelation approximation.
First, it computes the fundamental frequency using the power spectrum of signal.
Next, it computes the autocorrelation in Fourier space.
Then, local maxima in the autocorrelation are found, the HNR computed and the maximum HNR
and the corresponding frequency is returned.

\[R_{xx} = \frac{1}{N} \sum_{k=l}^{N-1} x[k]x[k-l]\]

\[HNR = \frac{R_{xx}[T_0]}{R_{xx}[0]-R_{xx}[T_0]}\]

	Parameters

	
	signal (numpy.ndarray) – audio signal

	freq (int) – sampling rate/frequency, e.g. 44100

	freq_lower (int, optional) – lower frequency cut-off, defaults to 50

	freq_higher (int, optional) – higher frequency cut-off, defaults to 350

	Returns

	HNR [dB], F0_FFT [Hz], F0_Autocorr [Hz]

	Return type

	tuple(float, float, float)

	
openhsv.analysis.parameters.cepstralPeakProminence(signal, freq, freq_lower=70, freq_higher=350, plot=False)

	Computes cepstral peak prominence from signal using Fourier transformations.

	Steps:

	
	Compute FFT from signal

	Compute fundamental frequency from power spectrum

	Compute cepstrum from FFT, filter with moving average (window = 3)

	Find maximum peak in cepstrum

	Find corresponding quefrency

	Fit line to cepstrum

	Compute distance from peak to line –> Cepstral Peak Prominence

	Parameters

	
	signal (numpy.ndarray) – audio signal

	freq (int) – sampling rate/frequency, e.g. 44100

	freq_lower (int, optional) – lower frequency cut-off, defaults to 70

	freq_higher (int, optional) – higher frequency cut-off, defaults to 350

	plot (bool, optional) – plots the cepstrum, the line and the peak prominence, defaults to False

	Returns

	CPP [dB], F0_FFT [Hz], F0_Cepstrum [Hz]

	Return type

	tuple(float, float, float)

	
openhsv.analysis.parameters.phaseAsymmetryIndex(left_gaw, right_gaw, opening)

	Phase Asymmetry Index (PAI)

\[PAI = \frac{|argmax_j GA_i^L(j) - argmax_j GA_i^R(j)|}{N_i}\]

Note

We use here the maximum instead of the minimum, as it is more
likely that there are multiple time points where the value
is minimal or close to the minimum (i.e. when the glottis
is closed for prolonged time).

	Parameters

	
	left_gaw (numpy.ndarray) – GAW of left vocal fold

	right_gaw (numpy.ndarray) – GAW from right vocal fold

	opening (list) – indices where glottis starts to open (i.e. new cycle)

	Returns

	PAI mean and std

	Return type

	tuple(float, float)

	
openhsv.analysis.parameters.amplitudeSymmetryIndex(left_gaw, right_gaw, opening, epsilon=1e-05)

	Amplitude Symmetry Index (ASI)

\[ASI = \frac{\min(\max_j(GA_i^L(j)), \max_j(GA_i^R(j)))}{\max(\max_j(GA_i^L(j)), \max_j(GA_i^R(j)))}\]

	Parameters

	
	left_gaw (numpy.ndarray) – GAW of left vocal fold

	right_gaw (numpy.ndarray) – GAW from right vocal fold

	opening (list) – indices where glottis starts to open (i.e. new cycle)

	epsilon (float, optional) – numerical stability, defaults to 1e-5

	Returns

	ASI mean and std

	Return type

	tuple(float, float)

	
class openhsv.analysis.parameters.Signal(raw_signal, dt=0.00025, debug=True)

	Bases: object

Inits the signal class with the raw signal, e.g. audio data or glottal area waveform.

	Parameters

	raw_signal (numpy.ndarray) – Audio signal, GAW or alike

	
computeFFT(use_filtered_signal=True, use_hanning=True, lowpass_filter=20)

	

	
computeCepstrum()

	

	
filterSignal(cutoff_frequency=0.1)

	

	
detectCycles(method='peaks', peak='max', use_filtered_signal=True)

	Detects cycles using different methods.

	Parameters

	
	method (str, optional) – method to detect cycles, defaults to ‘peaks’

	
	peaks

	Using a peak finding algorithm on the raw signal

	
	autocorrelation

	Detects cycles and period using autocorrelation

	use_filtered_signal (bool, optional) – uses filtered signal, if available.

	
detectPhases(use_filtered_signal=True)

	Detects opening and close phase in each cycle.

	Parameters

	use_filtered_signal (bool, optional) – Event detection on raw (False) or filtered (True) signal.

	
getPowerSpectrum()

	Returns power spectrum from signal

	Returns

	Frequencies and Amplitude

	Return type

	tuple(np.ndarray, np.ndarray)

	
getCepsturm()

	Returns cepstrum from signal

	Returns

	quefrencies and cepstrum

	Return type

	tuple(np.ndarray, np.ndarray)

	
class openhsv.analysis.parameters.Audio(raw_signal, dt=1.25e-05, use_filtered_signal=True, use_hanning=True, debug=False)

	Bases: openhsv.analysis.parameters.Signal

The Audio class handles audio data to compute respective parameters.

	Parameters

	
	raw_signal (numpy.ndarray) – the raw audio signal

	dt (float, optional) – time between samples in seconds, defaults to 1/80000

	use_filtered_signal (bool, optional) – use filtered signal for computations, defaults to True

	use_hanning (bool, optional) – use hanning window for FFT, defaults to True

	debug (bool, optional) – enable debugging mode, defaults to False

	
detectCycles(method='peaks', peak='max', use_filtered_signal=True)

	Detects cycles using different methods.

	Parameters

	
	method (str, optional) – method to detect cycles, defaults to ‘peaks’

	
	peaks

	Using a peak finding algorithm on the raw signal

	
	autocorrelation

	Detects cycles and period using autocorrelation

	use_filtered_signal (bool, optional) – uses filtered signal, if available.

	
filterSignal(freq_range=20)

	

	
computeParameters(use_filtered_signal=False)

	

	
class openhsv.analysis.parameters.GAW(raw_signal, dt=0.00025, use_filtered_signal=False, use_hanning=True, debug=False)

	Bases: openhsv.analysis.parameters.Signal

The GAW class handles the glottal area waveform (GAW) to compute respective parameters.

	Parameters

	
	raw_signal (numpy.ndarray) – raw GAW signal

	dt (float, optional) – time between samples in seconds, defaults to 1/4000

	use_filtered_signal (bool, optional) – use filtered signal for computations, defaults to False

	use_hanning (bool, optional) – use hanning window for FFT, defaults to True

	debug (bool, optional) – enable debugging mode, defaults to False

	
setLeftRightGAW(left_gaw, right_gaw)

	

	
computeParameters()

	

	
class openhsv.analysis.parameters.AnalysisPlatform(raw_signal, dt)

	Bases: PyQt5.QtWidgets.QWidget

openhsv.analysis.midline module

	
class openhsv.analysis.midline.Midline(seg, maxima=None)

	Bases: object

Midline prediction module.

Midline is predicted based on segmentation from neural net
for each peak. Midline is interpolated between peaks. Computations
are based on Kist et al., biorxiv 2020 [https://www.biorxiv.org/content/10.1101/2020.08.20.257428v1.abstract].

	Parameters

	
	seg (numpy.ndarray) – segmentation masks (T x H x W)

	maxima (list, optional) – detected maxima in GAW, defaults to None

	
predict(method='pca', time_range=5)

	Predicts midline with given method on each GAW peak.

	Parameters

	
	method (str, optional) – ‘pca’ or ‘moments’, defaults to ‘pca’

	time_range (int, optional) – time range around peak to improve prediction, defaults to 5

	
side()

	Returns left and right GAW based on midline in each frame

	Returns

	left and right GAW as array T x 2

	Return type

	numpy.ndarray

	
pvg(steps=64)

	Computes PVG in discrete steps for each side.

	Parameters

	steps (int, optional) – resolution along each axis, defaults to 64

	Returns

	phonovibrogram as T x steps*2

	Return type

	numpy.ndarray

	
openhsv.analysis.midline.imageMoments(im, transpose=True, angle_correction=1.5707963267948966)

	Predicts midline using image moments.

	Parameters

	
	im ([type]) – [description]

	transpose (bool, optional) – [description], defaults to True

	angle_correction ([type], optional) – [description], defaults to +np.pi/2

	Returns

	[description]

	Return type

	[type]

	
openhsv.analysis.midline.principalComponents(im, use_2nd=False)

	Midline prediction using principal component analysis.

	Parameters

	
	im (numpy.ndarray) – input image

	use_2nd (bool, optional) – use second principal component, defaults to False

	Returns

	slope and intercept of midline

	Return type

	tuple(float, float)

openhsv.analysis.pvg module

	
openhsv.analysis.pvg.get_labels(x_low, x_high, coef, intercept, image_shape, steps=64)

	Function for getting left/right step-id’d labels based on the AP axis

	Parameters

	
	x_low (float) – lower x coordinate

	x_high (float) – higher x coordinate

	coef (float) – coefficient of linear regression AP

	intercept (float) – intercept of linear regression AP

	image_shape (tuple(int, int)) – image size (HxW) for label

	steps (int) – steps between A and P

	Returns

	label map

	Return type

	numpy.ndarray

	
openhsv.analysis.pvg.compute_pvg(s, labels, steps=64)

	Calculates Phonovibrogram based on labels.

	Parameters

	
	s (numpy.ndarray) – segmented area (TxYxX)

	labels (numpy.ndarray) – labelled image

	steps (int, optional) – PVG resolution, defaults to 64

	Returns

	PVG, time x 2*steps

	Return type

	numpy.ndarray

openhsv.gui package

Submodules

openhsv.gui.misc module

	
class openhsv.gui.misc.fullScreenPreview

	Bases: PyQt5.QtWidgets.QWidget

Full Screen Preview widget

	
setImage(im)

	Sets image in central ImageView

	Parameters

	im (numpy.ndarray) – image to be shown

openhsv.gui.patient module

	
class openhsv.gui.patient.Patient(base_folder)

	Bases: PyQt5.QtWidgets.QDialog

Patient dialog

	Parameters

	base_folder (str) – base folder where data will be saved

	
close(self) → bool

	

	
get()

	

openhsv.gui.settings module

	
class openhsv.gui.settings.Settings(exposure, fps, audioSamplingRate, audioBlockSize, audioBufferSize, save_raw, base_folder)

	Bases: PyQt5.QtWidgets.QDialog

Define settings for OpenHSV operation, especially camera, audio and save settings.

	
selectBaseFolder()

	

	
get()

	

	
saveAndClose()

	

Module contents

openhsv.hardware package

Submodules

openhsv.hardware.camera module

	
class openhsv.hardware.camera.Camera(verbose=True)

	Bases: abc.ABC

An abstract camera class

	Parameters

	
	ABC (object) – abstract class

	verbose (bool, optional) – prints to console, defaults to True

	
openCamera()

	opens camera

	
configCam(*args, **kwargs)

	configures camera

	
setSettings(exposure, fps, *args, **kwargs)

	sets camera settings

	Parameters

	
	exposure (int) – exposure time

	fps (int) – frames per second

	
isIdle()

	returns if camera is recording or not (boolean)

	
startGrab()

	Starts acquisition on camera

	
stopGrab()

	stops acquisition on camera

	
live()

	returns live image preview as numpy array

	
updateTriggerPosition()

	Updates the trigger position for internal memory view

	
getMemoryFrame(frame_index, by_trigger)

	gets memory frame from camera onboard memory

	Parameters

	frame_index (int) – frame index in memory

	
closeCamera()

	closes camera connection

	
class openhsv.hardware.camera.DummyCamera(is_color=True, verbose=True)

	Bases: openhsv.hardware.camera.Camera

	
openCamera()

	opens camera

	
configCam()

	configures camera

	
setSettings(*args, **kwargs)

	sets camera settings

	Parameters

	
	exposure (int) – exposure time

	fps (int) – frames per second

	
isIdle()

	returns if camera is recording or not (boolean)

	
startGrab()

	Starts acquisition on camera

	
stopGrab()

	stops acquisition on camera

	
live()

	returns live image preview as numpy array

	
getMemoryFrame(frame_index, by_trigger=True)

	gets memory frame from camera onboard memory

	Parameters

	frame_index (int) – frame index in memory

	
closeCamera()

	closes camera connection

	
updateTriggerPosition()

	Updates the trigger position for internal memory view

	
class openhsv.hardware.camera.IdtCamera(verbose=True)

	Bases: openhsv.hardware.camera.Camera

The IdtCamera class uses the abstract Camera class to interact with the IDT high-speed camera API.
In particular it starts and stops recording, fetches frames from the internal camera memory,
and sets settings, such as exposure time and framerate.

	Parameters

	verbose (bool, optional) – Additional information is printed to the command window.
Maybe important for debugging purposes. Defaults to True.

	
openCamera()

	Searches for attached cameras and opens the first found one

	Returns

	success in opening the camera

	Return type

	bool

	
configCam(px_gain=1, camera_gain=1)

	Basic camera configuration, such as gain.

	Parameters

	
	px_gain (int, optional) – Pixel gain (selects 8 from 10 bits, lower (0), middle (1) and upper (2) 8 bits), defaults to 1

	camera_gain (int, optional) – Camera gain, defaults to 1

	
setSettings(exposure, fps, roi=(1024, 1024), rec_mode=1, sync=True)

	Sets camera settings.

	Parameters

	
	exposure (int) – Exposure time in us (microseconds)

	fps (int) – Camera sampling rate in frames per second

	roi (tuple or None, optional) – if camera image should cropped to ROI (i.e. may run faster).
If not desired, set roi=None, otherwise (height, width). Defaults to (1024, 1024)

	rec_mode (XsCamera.XS_REC_MODE, optional) – Recording mode, defaults to XsCamera.XS_REC_MODE.XS_RM_CIRCULAR

	sync (bool, optional) – If recording should be synchronized to trigger, defaults to True

	
getStatus()

	Returns camera status. Status indicates if the camera is recording on a circular buffer
or the camera is in idle mode or the recording is done.

	Returns

	business and status

	Return type

	bool, XsCamera.XS_STATUS

	
isIdle()

	Determines if camera is not recording via XS_STATUS

	
startGrab()

	Starts recording images on camera using previous set settings

	
stopGrab()

	Stops data acquisition

	Returns

	number of recorded frames

	Return type

	int

	
live()

	Returns live image using XsMemoryPreview
:return:

	
correctForTrigger(frame_index)

	Correct frame_index for trigger index, otherwise indexing is not historically

	Parameters

	frame_index (int) – absolute frame index

	Returns

	frame index relative to trigger

	Return type

	int

	
getMemoryFrame(frame_index, by_trigger=True)

	Creates a buffer and retrieves a camera frame by index from the camera’s onboard memory.

	Parameters

	
	frame_index (int) – The frame index

	by_trigger (bool, optional) – If the frame index should be relative to the trigger, defaults to True

	Returns

	the camera frame in RGB (height, width, 3) or grayscale (height, width, 1)

	Return type

	numpy.ndarray

	
updateTriggerPosition()

	updates internally trigger position

	Returns

	trigger position

	Return type

	int

	
closeCamera()

	Closes camera handle

Module contents

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openhsv	

 	
 	
 openhsv.analysis	

 	
 	
 openhsv.analysis.midline	

 	
 	
 openhsv.analysis.nn	

 	
 	
 openhsv.analysis.parameters	

 	
 	
 openhsv.analysis.pvg	

 	
 	
 openhsv.gui	

 	
 	
 openhsv.gui.misc	

 	
 	
 openhsv.gui.patient	

 	
 	
 openhsv.gui.settings	

 	
 	
 openhsv.hardware	

 	
 	
 openhsv.hardware.camera	

 	
 	
 openhsv.main	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	
 	amplitudePerturbationFactor() (in module openhsv.analysis.parameters)

 	amplitudePerturbationQuotient() (in module openhsv.analysis.parameters)

 	amplitudeQuotient() (in module openhsv.analysis.parameters)

 	amplitudeSymmetryIndex() (in module openhsv.analysis.parameters)

 	
 	Analysis (class in openhsv.analysis.nn)

 	AnalysisPlatform (class in openhsv.analysis.parameters)

 	analyze() (openhsv.OpenHSV method)

 	asymmetryQuotient() (in module openhsv.analysis.parameters)

 	Audio (class in openhsv.analysis.parameters)

C

 	
 	Camera (class in openhsv.hardware.camera)

 	cepstralPeakProminence() (in module openhsv.analysis.parameters)

 	close() (openhsv.gui.patient.Patient method)

 	(openhsv.OpenHSV method)

 	closeCamera() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	closingQuotient() (in module openhsv.analysis.parameters)

 	compute_pvg() (in module openhsv.analysis.pvg)

 	computeCepstrum() (openhsv.analysis.parameters.Signal method)

 	
 	computeFFT() (openhsv.analysis.parameters.Signal method)

 	computeOCandCOTransitions() (in module openhsv.analysis.parameters)

 	computeOpenAndClosedIntervals() (in module openhsv.analysis.parameters)

 	computeParameters() (openhsv.analysis.nn.Analysis method)

 	(openhsv.analysis.parameters.Audio method)

 	(openhsv.analysis.parameters.GAW method)

 	configCam() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	correctForTrigger() (openhsv.hardware.camera.IdtCamera method)

D

 	
 	detectCycles() (openhsv.analysis.parameters.Audio method)

 	(openhsv.analysis.parameters.Signal method)

 	detectMaximaMinima() (in module openhsv.analysis.parameters)

 	
 	detectOpeningAndClosingEvents() (in module openhsv.analysis.parameters)

 	detectPhases() (openhsv.analysis.parameters.Signal method)

 	DummyCamera (class in openhsv.hardware.camera)

F

 	
 	F0() (openhsv.OpenHSV method)

 	F0fromAutocorrelation() (in module openhsv.analysis.parameters)

 	F0fromCycles() (in module openhsv.analysis.parameters)

 	F0fromFFT() (in module openhsv.analysis.parameters)

 	
 	filterSignal() (openhsv.analysis.parameters.Audio method)

 	(openhsv.analysis.parameters.Signal method)

 	findpatient() (openhsv.OpenHSV method)

 	fullScreenPreview (class in openhsv.gui.misc)

G

 	
 	GAW (class in openhsv.analysis.parameters)

 	get() (openhsv.analysis.nn.Analysis method)

 	(openhsv.gui.patient.Patient method)

 	(openhsv.gui.settings.Settings method)

 	get_labels() (in module openhsv.analysis.pvg)

 	getCepsturm() (openhsv.analysis.parameters.Signal method)

 	
 	getMemoryFrame() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	getPowerSpectrum() (openhsv.analysis.parameters.Signal method)

 	getStatus() (openhsv.hardware.camera.IdtCamera method)

 	glottalGapIndex() (in module openhsv.analysis.parameters)

H

 	
 	harmonicNoiseRatio() (in module openhsv.analysis.parameters)

I

 	
 	IdtCamera (class in openhsv.hardware.camera)

 	imageMoments() (in module openhsv.analysis.midline)

 	initAudio() (openhsv.OpenHSV method)

 	initCamera() (openhsv.OpenHSV method)

 	
 	initSettings() (openhsv.OpenHSV method)

 	isIdle() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

J

 	
 	jitterPercent() (in module openhsv.analysis.parameters)

L

 	
 	live() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

M

 	
 	meanJitter() (in module openhsv.analysis.parameters)

 	meanShimmer() (in module openhsv.analysis.parameters)

 	
 	Midline (class in openhsv.analysis.midline)

 	movingAverage (in module openhsv.analysis.parameters)

N

 	
 	nextFrame() (openhsv.OpenHSV method)

O

 	
 	openCamera() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	OpenHSV (class in openhsv)

 	openhsv (module)

 	openhsv.analysis (module)

 	openhsv.analysis.midline (module)

 	openhsv.analysis.nn (module)

 	openhsv.analysis.parameters (module)

 	
 	openhsv.analysis.pvg (module)

 	openhsv.gui (module)

 	openhsv.gui.misc (module)

 	openhsv.gui.patient (module)

 	openhsv.gui.settings (module)

 	openhsv.hardware (module)

 	openhsv.hardware.camera (module)

 	openhsv.main (module)

 	openQuotient() (in module openhsv.analysis.parameters)

P

 	
 	Patient (class in openhsv.gui.patient)

 	patient() (openhsv.OpenHSV method)

 	periodPerturbationFactor() (in module openhsv.analysis.parameters)

 	phaseAsymmetryIndex() (in module openhsv.analysis.parameters)

 	
 	playStop() (openhsv.OpenHSV method)

 	predict() (openhsv.analysis.midline.Midline method)

 	principalComponents() (in module openhsv.analysis.midline)

 	pvg() (openhsv.analysis.midline.Midline method)

R

 	
 	rateQuotient() (in module openhsv.analysis.parameters)

 	
 	ROIDialog (class in openhsv.analysis.nn)

S

 	
 	save() (openhsv.OpenHSV method)

 	saveAndClose() (openhsv.gui.settings.Settings method)

 	screenshot() (openhsv.OpenHSV method)

 	segment() (openhsv.analysis.nn.Analysis method)

 	segmentSequence() (openhsv.analysis.nn.Analysis method)

 	selectBaseFolder() (openhsv.gui.settings.Settings method)

 	setAudio() (openhsv.analysis.nn.Analysis method)

 	setImage() (openhsv.gui.misc.fullScreenPreview method)

 	(openhsv.OpenHSV method)

 	setLeftRightGAW() (openhsv.analysis.parameters.GAW method)

 	setSettings() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	Settings (class in openhsv.gui.settings)

 	settings() (openhsv.OpenHSV method)

 	
 	shimmerPercent() (in module openhsv.analysis.parameters)

 	showMaximized() (openhsv.OpenHSV method)

 	side() (openhsv.analysis.midline.Midline method)

 	Signal (class in openhsv.analysis.parameters)

 	speedIndex() (in module openhsv.analysis.parameters)

 	speedQuotient() (in module openhsv.analysis.parameters)

 	startCamera() (openhsv.OpenHSV method)

 	startGrab() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	stiffness() (in module openhsv.analysis.parameters)

 	stopAudio() (openhsv.OpenHSV method)

 	stopGrab() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 	syncAudio() (openhsv.analysis.nn.Analysis method)

U

 	
 	updateRangeIndicator() (openhsv.OpenHSV method)

 	updateTriggerPosition() (openhsv.hardware.camera.Camera method)

 	(openhsv.hardware.camera.DummyCamera method)

 	(openhsv.hardware.camera.IdtCamera method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/corona_shield.png

_images/data_analysis.png
Audio analysis

L

raw signal FFT — Cepstrum
FO
filtering
|
bandpass F median
Zero crossings [(—» period det.
Jitter
autocorrelation ?hlmmer
0
F,(std)
HNR
CPP «

GAW analysis

footage

|

segmentation

v

GAW

v

peak finding

!

determine
1) start opening
2) stop closing

v
CO/0C

v

open + closed
phase

l

Opening Quotient (OQ)
Closing Quotient (CQ)
Speed Quotient (SQ)

Speed Index (SI)

_images/Mic_clamp.png

_images/connection.png
Audio interface

Camera

Microphone
Endoscope
/ N\
|
Objective
§ Light source
®N ©

® OUT

. Camera
Mic Sync
Audio
data
Breakout (@
board ;
Video data
O
o ®
—1
PC
O
Foot switch m—

_images/openhsv_screenshot.png
Camera frame preview Audio and reference signal Change settings

OpenHSV

Camera

F0: 353.3 Hz

selected range from footage Recording, analysis and saving options

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to OpenHSV’s documentation!

 		
 Introduction

 		
 Hardware setup

 		
 Audio

 		
 Video

 		
 Illumination

 		
 Acquisition

 		
 Software setup

 		
 Requirements

 		
 Supported cameras

 		
 Install and Operate OpenHSV

 		
 Testing environment

 		
 Your fist acquisition

 		
 Saving data

 		
 Data Analysis

 		
 Audio analysis

 		
 Video analysis

 		
 Analysis

 		
 3D printed parts

 		
 Endoscope holder

 		
 Cable holder

 		
 Microphone mount

 		
 Droplet protection shield

 		
 openhsv

 		
 openhsv package

 		
 Submodules

 		
 openhsv.main module

 		
 Module contents

 		
 openhsv package

 		
 Submodules

 		
 openhsv.main module

 		
 Module contents

 		
 openhsv.analysis package

 		
 Module contents

 		
 Submodules

 		
 openhsv.analysis.nn module

 		
 openhsv.analysis.parameters module

 		
 openhsv.analysis.midline module

 		
 openhsv.analysis.pvg module

 		
 openhsv.gui package

 		
 Submodules

 		
 openhsv.gui.misc module

 		
 openhsv.gui.patient module

 		
 openhsv.gui.settings module

 		
 Module contents

 		
 openhsv.hardware package

 		
 Submodules

 		
 openhsv.hardware.camera module

 		
 Module contents

_images/Cable_holder.png

_static/up.png

_images/Endoscope_holder.png

_static/up-pressed.png

